
Cloudless Device Management
Technical Handbook v2 for carrier 0.14

devguard.io

Introduction

Welcome to cloudless device management!

More than a decade ago when i started my career
at Nokia, it was clear that the internet would shift
from services to data. Data was indeed the new
oil, and the well owners soon became rich. But
just like oil, when it leaks, you’re in trouble.

Devguard is different. When we create software
no stone is left unturned to avoid collecting data.
Providing customer the tools to build better IoT
products is our primary and only mission.

This guide should introduce you to the concepts
and ideas behind devguard, the first and only IoT
management built for data sovereignty

Thank you for being part of the journey.

Index

1. Cryptosystem
1.1. Sovereign Identity
1.2. Device Identity
1.3. Authorizations
1.2. Secrets
1.3. Principal Authority

2. Transport Protocol
2.1. Direct Connections
2.2. NAT Traversal / Hiding IPs
2.3. Bidirectional Streams

3. Interacting with individual Devices
3.1. API discovery
3.2. Opening a shell
3.3. System Info

4. Interacting with many devices
4.1. Networks
4.2. Controllers
4.3. Conduit

1.1. Sovereign Identity

Privacy and security both start with Identity.
Identity is a way to ensure you are in fact you.

While in traditional technical design an identity
would be a username and password that is stored
by a third party, devguard uses cryptographic
primitives to enable you to give an identity to
yourself without registering with anyone.

An Ed25519 public key used as devguard identity
is actually a really really large number. That
number is so big, it is bigger than the number of
atoms in the universe.

If you haven’t done it yet, now is a good time to
install the carrier cli. On macos, the cli is available
via homebrew. Call the identity command to see
your public identity.

$ brew tap devguardio/tap
$ brew install carrier
$ carrier identity
cDFIO98BIVQAW2YVI82NG27DPTG45TZNNUAB84QM5UIXMUB9N
ADBQA

1.2. Device Identity

If you purchased a devguard device directly
from a partner factory, it will include a QR code
or shipping manifest, that has the devices
public identity on it.

Or when setting up a new device yourself, use
the command line utility on the device itself or
refer to the instructions of the app you’re
using.

$ carrier publish
my identity:
cDFIO98BIVQAW2YVI82NG27DPTG45TZNNUAB84QM5UIXMUB
9NADBQA

1.3. Authorization

Devices on the network need to know which
identity is authorized to do what. Factory fresh
devices will start with no authorizations, which
means anyone can “claim” them.

Use the carrier cli or the authorization
endpoint to add a first authorized identity.
Note that when adding an authorization to a
previously factory reset device, it will become
“claimed” and no longer accept connections
from any other identity.

Add an authorization with path “*” to ensure
your first authorization has access to all APIs

$ carrier config cDEF23B… auth add self "*"

1.4. Principal Authority

We previously learned that devices know
which identity is allowed to do what by
authorizations.

As a company you will likely have many
computers you would like to authorize to
interact with your devices, but it is
inconvenient to add an authorization for each
of those computers to all of your devices.

You can instead use an identity as a principal,
which allows any identity to act on behalf of
another “shared” identity.

Opening a stream in golang

2.1. Direct Connections

Devguard is centered around end to end
encrypted connections between peers on the
network. We never see any data, and under
ideal conditions we don’t even see metadata.

While traditional IoT systems host a webserver
and give you client apis, devguard assigns both
roles to you, while only running the technically
difficult components on your behalf.

Carrier helps establish connections initially but
does get involved beyond that.

Your
service

devguard ring

Your
deviceencrypted data channel

Cryptographic
attestation

Cryptographic
attestation

2.2. Nat Traversal

No user components including server systems
require their public IP address to be exposed,
both can be behind NATs and firewalls.

The two big advantages are privacy and not
having to bother with configuring the uplink
that your device ultimately runs on. Any
consumer internet connection works, even LTE

Unlike STUN, the carrier ring will only help
devices establish peer to peer connections
after checking authorizations and attesting
the cryptographic handshake. Insecure
connections are not established.

Your service devguard ring

Your device

Request
Connection

Request
Connection

Accept

2.3. Bidirectional Streams

Establishing a secure channel between devices
is the responsibility of various devguard
systems and cryptography. Once you have a
channel, you can start streams.

Streams are a bidirectional ordered message
passing mechanism. If you’re familiar with
http3, you will be immediately familiar with
carrier streams.

Opening streams is very efficient (0RTT), so
polling within a channel is fine.

Opening a stream in golang

channel

stream stream

open close open frame frame

3.1. Api Discovery

Although streams and their meanings are
customer specific, every device usually has
some standard streams available.

Every device will respond to the standard
discovery command and list streams available
to your authorization.

$ carrier get disco cDEF23B…
 "paths": [
 "/v0/shell”,
 "/v0/tcp”
]

3.2. Opening a shell

Most devices will support some sort of shell.
Unlike ssh, the shell built into carrier does not
require configuring any network between you
and the device. It will be transported over a
regular carrier stream.

Opening a shell is great for debugging and
individual access, but at scale you will likely
use different services.

host $ carrier shell cDEF23B…
Last login: 2.3.2020
box $

3.3. System Info

Sysinfo is a non interactive standard stream
available by default. Use it to discover runtime
information about your devices, such as
memory usage, cpu load, disk usage, network
settings, but also static info such as current
firmware version.

Streams are 0RTT like in http3. The “avoid
polling” rule you may be used to from http2
does not apply. Within an established channel,
polling the stream is cheap, so do it as much as
you’d like.

host $ carrier get sysinfo cDEF23B…
 mem: Some(
 Mem {
 total: 65840224,
 free: 36428352,
 available: 61719852,
 },
),
 load: Some(
...

4.1. Networks

So far we worked with individual devices.
Devguard is really about managing millions of
devices.

We refer to a group of devices as a
“Network”, and they do have a group identity,
the “Network Address” Each group of devices
on a network, shares that common network
address.

To see the network you are currently part of
use the net address command

$ carrier net address
xC71A123…

4.2. Controllers

Due to the nature of end to end encryption,
you cannot send messages to all devices in a
network at once, but you can use a network
address as a discoverable iterator to create
thousands of messages instead.

Instead of polling for a list of devices, users
typically create a controller that subscribes to
join/leave events on the network and acts on
them according to some business logic.

This is your side of the infrastructure, where
you would also store data and connect
identities with other identifiers that devguard
does not need to have, such as customer
names.

$ carrier net subscribe
+ cDH8HHYUMW...

4.3. Conduit

This is where the cli starts being limiting.
Carrier has SDKs for several languages to
implement your own systems in.

As a starting point, there’s a built in controller
called “conduit” in the cli showing your
network a bit more graphical.

$ carrier conduit

